Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 478

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Revision of the criticality safety handbook in light of the reality of the nuclear fuel cycle in Japan; With a view to transportation and storage of fuel debris

Suyama, Kenya; Ueki, Taro; Gunji, Satoshi; Watanabe, Tomoaki; Araki, Shohei; Fukuda, Kodai

Proceedings of 20th International Symposium on the Packaging and Transportation of Radioactive Materials (PATRAM22) (Internet), 5 Pages, 2023/06

Since the 1990s, the importance of the handbook has changed significantly, as the computational power has improved and continuous energy Monte Carlo codes have become widely used, which enables highly accurate criticality calculations, when necessary, irrespective of the complexity of the system. Because the value of performing a large number of calculations in advance and summarizing the data has decreased, since the second edition was published publicly in 1999, there has been no revision of criticality safety handbooks in Japan for nearly a quarter of a century. In Japan, where the Fukushima Daiichi Nuclear Power Plant accident occurred in 2011, it became necessary to deal with criticality safety issues in the transport and storage of the fuel debris which contains complex constituent elements, and the summary the criticality safety management for such material is an urgent issue. In the area of burnup credit, the transport and storage of fuel assemblies with low achieved burnups due to the consequences of accidents might be the problem. In addition, nuclear data, which is the input for the continuous energy Monte Carlo code, has been improved several times, now JENDL-5 is available from the end of 2021, and its incorporation becomes a need in the field. This report provides an overview of the latest criticality safety research in Japan and the planned revision of the Criticality Safety Handbook, which could be applied to the transport and storage sectors.

Journal Articles

Thirty-year simulation of environmental fate of $$^{137}$$Cs in the Abukuma River basin considering the characteristics of $$^{137}$$Cs behavior in land uses

Ikenoue, Tsubasa; Shimadera, Hikari*; Nakanishi, Takahiro; Kondo, Akira*

Science of the Total Environment, 876, p.162846_1 - 162846_12, 2023/06

 Times Cited Count:2 Percentile:52.26(Environmental Sciences)

We conducted 30 years simulation of environmental fate of $$^{137}$$Cs in the Abukuma River basin considering the characteristics of the $$^{137}$$Cs behavior in land uses. Overall, in the Abukuma River basin, the $$^{137}$$Cs transported into the ocean for 30 years was estimated to correspond to 4.6% of the initial deposition in the basin, and the effective half-life of $$^{137}$$Cs deposited in the basin was estimated to be 3.7 years shorter (by 11.6%) than its physical half-life. These results suggested that $$^{137}$$Cs deposited from the accident could still remain for decades. Based on the analysis of the $$^{137}$$Cs behavior in land use, in 2011, the contribution of $$^{137}$$Cs export to the ocean from urban lands was estimated to correspond to 70% of the total $$^{137}$$Cs export. Meanwhile, from 2012 to 2040, the contribution of $$^{137}$$Cs export from agricultural lands was estimated to correspond to 75% of the total $$^{137}$$Cs export. The reduction ratios excluding radioactive decay of $$^{137}$$Cs remained in areas with and without human activities for 30 years after the accident, defined as the ratios of the total outflow to the initial deposition, were estimated to be 11.5%-17.7% and 0.4%-1.4%, respectively. These results suggested that human activities enhance the reduction of $$^{137}$$Cs remaining in land in the past and future.

Journal Articles

Magnon dynamics in a Skyrmion-textured domain wall of antiferromagnets

Lee, S.*; Nakata, Koki; Tchernyshyov, O.*; Kim, S. K.*

Physical Review B, 107(18), p.184432_1 - 184432_12, 2023/05

 Times Cited Count:4 Percentile:90.23(Materials Science, Multidisciplinary)

We theoretically investigate the interaction between magnons and a Skyrmion-textured domain wall in a two-dimensional antiferromagnet and elucidate the resultant properties of magnon transport. Using supersymmetric quantum mechanics, we solve the scattering problem of magnons on top of the domain wall and obtain the exact solutions of propagating and bound magnon modes. Then, we find their properties of reflection and refraction in the Skyrmion-textured domain wall, where magnons experience an emergent magnetic field due to its non-trivial spin texture-induced effective gauge field. Finally, we show that the thermal transport decreases as the domain wall's chirality increases. Our results suggest that the thermal transport of an antiferromagnet is tunable by modulating the Skyrmion charge density of the domain wall.

Journal Articles

ACE-FRENDY-CBZ; A New neutronics analysis sequence using multi-group neutron transport calculations

Chiba, Go*; Yamamoto, Akio*; Tada, Kenichi

Journal of Nuclear Science and Technology, 60(2), p.132 - 139, 2023/02

 Times Cited Count:2 Percentile:53.91(Nuclear Science & Technology)

A new multi-group neutronics analysis sequence ACE-FRENDY-CBZ is proposed. This sequence is free from uses of any application libraries; with the ACE files as the starting point, multi-group cross section data of media comprising a target system are calculated with the FRENDY code, and multi-group neutron transport calculations are performed with modules of the CBZ code system. The ACE-FRENDY-CBZ sequence was tested against the eight fast neutron systems, and good agreement with the reference Monte Carlo results was obtained within 30 pcm differences in the bare systems and the thorium-reflected system, and approximately 100 pcm differences in the uranium-reflected systems. The use of the current-weighted total cross sections in the multi-group neutron transport calculations had non-negligible impacts over 100 pcm on k-eff, and the calculations with the current-weighted total cross sections systematically underestimated k-eff in the uranium-reflected systems.

Journal Articles

Acoustic spin transport by superconducting quasiparticles

Funato, Takumi*; Yamakage, Ai*; Matsuo, Mamoru

Physical Review B, 106(21), p.214420_1 - 214420_7, 2022/12

 Times Cited Count:1 Percentile:17.38(Materials Science, Multidisciplinary)

Journal Articles

Comparative study for two-terminal transport through a lossy one-dimensional quantum wire

Uchino, Shun

Physical Review A, 106(5), p.053320_1 - 053320_14, 2022/11

 Times Cited Count:4 Percentile:67.72(Optics)

Motivated by realization of the dissipative quantum point contact in ultracold atomic gases, we investigate a two-terminal mesoscopic transport system in which a single-particle loss is locally present in a one-dimensional chain. By means of the Dyson equation approach in the Keldysh formalism that can incorporate dissipative effects, we reveal analytic structures of the particle and energy currents whose formal expressions correspond to ones in certain three-terminal systems where the particle loss is absent. The obtained formulas are also consistent with non-hermitian and three-terminal Landauer-Buttiiker analyses. The universality on the current expressions holds regardless of quantum statistics and may be useful for understanding lossy two-terminal transport in terms of three-terminal transport and vice versa.

Journal Articles

Optical spin conductivity in ultracold quantum gases

Sekino, Yuta*; Tajima, Hiroyuki*; Uchino, Shun

Physical Review Research (Internet), 4(4), p.043014_1 - 043014_16, 2022/10

We show that the optical spin conductivity being a small AC response of a bulk spin current and elusive in condensed matter systems can be measured in ultracold atoms. We demonstrate that this conductivity contains rich information on quantum states by analyzing experimentally achievable systems. The obtained conductivity spectra being absent in the Drude conductivity reflect quasiparticle excitations and non-Fermi liquid properties. Unlike its mass transport counterpart, the spin conductivity serves as a probe applicable to clean atomic gases without disorder and lattice potentials. Our formalism can be generalized to various systems such as spin-orbit coupled and nonequilibrium systems.

Journal Articles

Development of combined-function multipole permanent magnet for high-intensity beam transportation

Fuwa, Yasuhiro; Takayanagi, Tomohiro; Iwashita, Yoshihisa*

IEEE Transactions on Applied Superconductivity, 32(6), p.4006705_1 - 4006705_5, 2022/09

 Times Cited Count:0 Percentile:0(Engineering, Electrical & Electronic)

Space charge compensation technique using multipole magnetic field components has been proposed to transport high intensity beam in the J-PARC linac. In order to realize this compensation technique, a compact size permanent hybrid multi-pole magnet would be suitable. A magnet system for the simultaneous production of quadrupole and adjustable octupole components using permanent magnet materials and have manufactured a first model of the magnet systems.

Journal Articles

Multiparticle tunneling transport at strongly correlated interfaces

Tajima, Hiroyuki*; Oue, Daigo*; Matsuo, Mamoru

Physical Review A, 106(3), p.033310_1 - 033310_8, 2022/09

 Times Cited Count:3 Percentile:23.32(Optics)

Journal Articles

IAEA's recent activities on nuclear safety and nuclear security in transport of radioactive and nuclear materials

Tamai, Hiroshi

Nihon Genshiryoku Gakkai-Shi ATOMO$$Sigma$$, 64(8), p.465 - 467, 2022/08

Though nuclear safety and nuclear security share the same goal of protecting the public and the environment from the harmful effects of ionizing radiation, their response actions may have differences, especially during transport, where protection could be vulnerable. The interface between them is a major issue. In December 2021, with the aim of complementarily strengthening nuclear safety and nuclear security in the transportation of radioactive materials IAEA published a related technical report and held an international conference. The outline of the technical report and the international conference is introduced.

Journal Articles

Damage evaluations for BWR lower head in severe accident based on multi-physics simulations

Katsuyama, Jinya; Yamaguchi, Yoshihito; Nemoto, Yoshiyuki; Furuta, Takuya; Kaji, Yoshiyuki

Proceedings of ASME 2022 Pressure Vessels and Piping Conference (PVP 2022) (Internet), 9 Pages, 2022/07

Journal Articles

Valley transport driven by dynamic lattice distortion

Ominato, Yuya*; Oue, Daigo*; Matsuo, Mamoru

Physical Review B, 105(19), p.195409_1 - 195409_9, 2022/05

 Times Cited Count:1 Percentile:17.38(Materials Science, Multidisciplinary)

Journal Articles

Direct and alternating magnon spin currents across a junction interface irradiated by linearly polarized laser

Nakata, Koki; Onuma, Yuichi*

Physical Review B, 105(14), p.144436_1 - 144436_7, 2022/04

 Times Cited Count:0 Percentile:0(Materials Science, Multidisciplinary)

Using a junction of the ferromagnetic insulators irradiated by linearly polarized laser, we propose a method for the generation of dc and ac spin currents of magnons across the junction interface, and provide an analytical formula for magnon transport induced by the inversion symmetry breaking.

Journal Articles

Optical spin transport theory of spin-$$frac{1}{2}$$ topological Fermi superfluids

Tajima, Hiroyuki*; Sekino, Yuta*; Uchino, Shun

Physical Review B, 105(6), p.064508_1 - 064508_9, 2022/02

 Times Cited Count:4 Percentile:59.24(Materials Science, Multidisciplinary)

We theoretically investigate optical bulk spin transport properties in a spin-$$frac{1}{2}$$ topological Fermi superfluid. We specifically consider a one-dimensional system with an inter-spin $$p$$-wave interaction, which can be realized in ultracold-atom experiments. Developing the BCS-Leggett theory to describe the BCS to Bose-Einstein condensate evolution and the Z$$_{2}$$ topological phase transition in this system, we show how the spin transport reflects these many-body aspects. We find that the optical spin conductivity, which is a small AC response of a spin current, shows the spin-gapped spectrum in the wide parameter region and the gap closes at the Z$$_{2}$$ topological phase transition point. Moreover, the validity of the low-energy effective model of the Majorana zero mode is discussed along the BCS-BEC evolution in connection with the scale invariance at $$p$$-wave unitarity.

Journal Articles

Experimental study on aerosol transport behavior in multiple cells with expandable connecting pipe for safety assessment of sodium-cooled fast reactors

Umeda, Ryota; Kondo, Toshiki; Kikuchi, Shin; Kurihara, Akikazu

Proceedings of 28th International Conference on Nuclear Engineering (ICONE 28) (Internet), 9 Pages, 2021/08

In this study, in order to obtain the fundamental information on aerosol transport behavior between cells, the Multiple cells with Expandable connecting pipe Test facility (MET) was manufactured and preliminary experiments were performed. In the preliminary experiments, simulated particles were used in a test system with two cells connected horizontally or vertically, and their transport behavior was measured. As a result, it was possible to confirm the behavior of the simulated particles transporting to the horizontal or vertical cells from the results such as images and sedimentation data.

Journal Articles

Long-range spin transport on the surface of topological Dirac semimetal

Araki, Yasufumi; Misawa, Takahiro*; Nomura, Kentaro*

Physical Review Research (Internet), 3(2), p.023219_1 - 023219_15, 2021/06

We theoretically propose the long-range spin transport mediated by the gapless surface states of topological Dirac semimetal (TDSM). Low-dissipation spin current is a building block of next-generation spintronics devices. While conduction electrons in metals and spin waves in ferromagnetic insulators (FMIs) are the major carriers of spin current, their propagation length is inevitably limited due to the Joule heating or the Gilbert damping. In order to suppress dissipation and realize long-range spin transport, we here make use of the spin-helical surface states of TDSMs, such as Cd$$_3$$As$$_2$$ and Na$$_3$$Bi, which are robust against disorder. Based on a junction of two FMIs connected by a TDSM, we demonstrate that the magnetization dynamics in one FMI induces a spin current on the TDSM surface flowing to the other FMI. By both the analytical transport theory on the surface and the numerical simulation of real-time evolution in the bulk, we find that the induced spin current takes a universal semi-quantized value that is insensitive to the microscopic coupling structure between the FMI and the TDSM. We show that this surface spin current is robust against disorder over a long range, which indicates that the TDSM surface serves as a promising system for realizing spintronics devices.

Journal Articles

Phase space formation of high intensity 60 and 80 mA H$$^-$$ beam with orifice in J-PARC front-end

Shibata, Takanori*; Ikegami, Kiyoshi*; Nammo, Kesao*; Liu, Y.*; Otani, Masashi*; Naito, Fujio*; Shinto, Katsuhiro; Okoshi, Kiyonori; Okabe, Kota; Kondo, Yasuhiro; et al.

JPS Conference Proceedings (Internet), 33, p.011010_1 - 011010_6, 2021/03

Together with the intensity upgrade in J-PARC Linac Front-End, improvement of RFQ transmission ratio is an important task. This RFQ transmission ratio depends strongly upon the solenoid current settings in the low energy beam transport line (LEBT). In the present study, high beam current cases (72 mA and 88 mA H$$^-$$ beam current in LEBT) are investigated at a test-stand. Phase space distributions of the H$$^-$$ beam particles at the RFQ entrance are measured and compared with numerical results by Particle-In-Cell simulation. As a result, it has been clarified that a 15 mm $$phi$$ orifice for differential pumping of H$$_2$$ gas coming from the ion source plays a role as a collimator in these beam conditions. This leads to change the beam emittance and Twiss parameters at the RFQ entrance. Especially in the condition with the beam current up to 88 mA in LEBT, the beam collimation contributes to optimize the phase space distribution to the RFQ acceptance with relatively low solenoid current settings. As a higher solenoid current setting would be necessary to suppress the beam expansion due to high space charge effect, these results suggest that current-saving of the solenoids can be possible even in the higher beam intensity operations.

Journal Articles

Impact of soil erosion potential uncertainties on numerical simulations of the environmental fate of radiocesium in the Abukuma River basin

Ikenoue, Tsubasa; Shimadera, Hikari*; Kondo, Akira*

Journal of Environmental Radioactivity, 225, p.106452_1 - 106452_12, 2020/12

 Times Cited Count:3 Percentile:14.71(Environmental Sciences)

This study focused on the uncertainty of the factors of the Universal Soil Loss Equation (USLE) and evaluated its impacts on the environmental fate of $$^{137}$$Cs simulated by a radiocesium transport model in the Abukuma River basin. The USLE has five physically meaningful factors: the rainfall and runoff factor (R), soil erodibility factor (K), topographic factor (LS), cover and management factor (C), and support practice factor (P). The simulation results showed total suspended sediment and $$^{137}$$Cs outflows were the most sensitive to C and P among the all factors. Therefore, land cover and soil erosion prevention act have the great impact on outflow of suspended sediment and $$^{137}$$Cs. Focusing on land use, the outflow rates of $$^{137}$$Cs from the forest areas, croplands, and undisturbed paddy fields were large. This study indicates that land use, especially forest areas, croplands, and undisturbed paddy fields, has a significant impact on the environmental fate of $$^{137}$$Cs.

Journal Articles

High-field depinned phase and planar Hall effect in the skyrmion host Gd$$_2$$PdSi$$_3$$

Hirschberger, M.*; Nakajima, Taro*; Kriener, M.*; Kurumaji, Takashi*; Spitz, L.*; Gao, S.*; Kikkawa, Akiko*; Yamasaki, Yuichi*; Sagayama, Hajime*; Nakao, Hironori*; et al.

Physical Review B, 101(22), p.220401_1 - 220401_6, 2020/06

 Times Cited Count:40 Percentile:91.78(Materials Science, Multidisciplinary)

478 (Records 1-20 displayed on this page)